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Chapter 1    
Introduction 

The Office of the Secretary Defense, Program Analysis and Evaluation, Tactical 
Air Division (OSD/PA&E TACAIR) has an ongoing effort focused on modeling 
and analysis of air combat and air campaigns in support of OSD decision making 
and planning. LMI has been assisting TACAIR with that effort. Our previous 
tasks have included air-to-air campaign modeling and laser propagation modeling: 

 Air-to-air campaign modeling. LMI developed extensions to, and applied, 
the Stochastic Lanchester Air-to-Air Combat Model (SLAACM). We also 
completed several related mathematical and campaign analyses. The 
original version of SLAACM, which includes a single Blue defender 
against an array of Red escorts and bombers, was expanded to include 
multiple Blue defender types for two different cases. In the first case, the 
model was extended to include sequential defense by different types of 
Blue aircraft. In the second case, the model was extended to include an op-
timized defense using a mix of Blue defender types simultaneously. These 
resulted in two different versions of the model. The sequential defense 
model has been documented as an update version, but the simultaneous 
defense version has not yet been formally documented.1 

 Laser propagation modeling. LMI extended the Airborne Laser Infrared 
Transmission model to include 1.06 μ wavelength solid-state lasers.2 In 
the process, we developed a new approach that allows straightforward in-
clusion of additional laser wavelengths as needed. 

The primary focus of the current task was air campaign modeling, both with 
SLAACM and with separate mathematical analyses. We used all versions of 
SLAACM in our classified analysis facility to address specific scenarios of inter-
est to TACAIR. The classified results have been reported to TACAIR separately. 

                                     
1 Current work on the simultaneous model includes linking to an integer optimizer to corrobo-

rate or replace the current heuristic optimizer. 
2 1.06 μ is the wavelength of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. 

We previously modeled the 3.152 μ chemical oxygen-iodine laser (COIL). The symbol, μ, stands 
for micron or 1 millionth (10-6) meter. Wavelength (λ) is also expressed in units of Angstroms (Å) 
(10-10 meter), and nanometers (10-9 meter). The wavelength can alternatively be expressed as a 
wave number that is equal to 1/λ with units of inverse centimeters (cm-1). 
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In addition to pure air-to-air campaign analyses using SLAACM, we analyzed 
general problems of ship interdiction and defense, suppression of enemy air de-
fense, and runway interdiction. This report conveys the results of that aspect of 
our work: 

 Chapter 2 contains a description of the sequential defense version of 
SLAACM, plus discussions of several individual campaign-related analy-
ses. 

 Chapter 3 is a discussion of an investigation into using SLAACM as a 
component in integrated analysis. 

 Chapter 4 documents a mathematical analysis of runway interdiction by 
cluster bombs. 
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Chapter 2    
Campaign Analyses 

In this chapter, we describe mathematical models of engagements between tacti-
cal air forces and certain land and sea-based forces. We describe the sequential 
defense version of SLAACM. We develop an engagement model to account for 
engagements of tactical aircraft when one combatant’s fighters carry only two 
missiles. We discuss generalized activity network models of the sequences of 
events that may occur when a Red force, based in a wide geographical region, at-
tacks a much smaller defended region. We derive relationships and spreadsheet 
methods for calculating the probability, for a given probability of success for a 
single draw, and assuming replacement after each draw, of obtaining at least one 
of each of M possible outcomes in a sequence of N draws. Last, we analyze the 
relationship between kill-rates and exchange ratios. The material is presented in 
this order: 

 SLAACM with sequential defense 

 New models of escorted bombers engaged by surface-to-air missile 
(SAM) sites 

 Models of engagements between tactical suppression of enemy air defense   
(SEAD)  aircraft and missile-firing ships 

 Model of tactical aircraft engagements when one aircraft type carries only 
two missiles 

 Modeling of combined-force engagements with generalized activity net-
works 

 Probability, given M different items and replacement after each draw, of 
drawing at least one of each of the M possible outcomes in N draws 

 Kill-rates and exchange ratios. 

SEQUENTIAL DEFENSE 
We developed an extension of SLAACM to treat a case in which the attackers are 
intercepted by two waves of defenders. In this treatment, the attackers first en-
counter the Black defending force. Attackers leaking from engagements with the 
Black force encounter the Green defending force. 

 2-1  



  

We assumed that the Red leakers were able to regroup, after their encounters with 
the Black force, into an optimal configuration for the encounters with the Green 
force. This assumption is, of course, optimistic for Red. In later work, we intend 
to add the case in which Red packages have a return-to-base (RTB) or breakaway 
criterion, such as “RTB if more than four escorts are destroyed.” In this case, the 
Green force would encounter only those attack packages that did not return to 
base. 

We implemented the extension by adding a driver subroutine, and worksheets for 
inputs and outputs for the sequential-defense case, to SLAACM. 

To use the extended version of SLAACM, the user enters the initial Red order of 
battle in the SLAACM Main worksheet as for a regular SLAACM run. Then, on 
Sheet 7, the user enters the Black aircraft type, the number of Black aircraft, the 
number of Green aircraft, and the number of “days” that the campaign is to run. 
The Black aircraft can be any Blue_NFX aircraft. The Green aircraft is always 
type LAD. (These restrictions on Black and Green aircraft types can be easily re-
laxed.) 

When those data are entered, the user executes the subroutine “run_sequential.” 
That subroutine operates the campaign in this way: for each day, Red launches an 
optimal dispatch of attack packages against that day’s Black force. As in previous 
SLAACM versions, Black responds with foreknowledge of Red’s packages’ 
compositions, or not, as the user specifies on SLAACM’s Main worksheet. 

After the Red/Black engagements, Red regroups into optimal dispatch options 
against the Green force, and the Red/Green engagements take place. 

The subroutine “run_sequential” collects “daily” strengths for all Red, Blue, and 
Green aircraft on Sheet 7. Each day has two sets of engagements, and Sheet 7 
shows the status of Red, Black, and Green forces after Black and Green engage-
ments separately. Sheet 8 gives charts of Red, Black, and Green orders of battle as 
they evolve during the campaign. Figure 2-1 and Figure 2-2 show orders of battle 
for the case in which the Black force is 48 Blue_NF2 fighters, the Green force is 
200 LADs, and the Red force is the standard SLAACM Red force. 
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Figure 2-1. Evolution of Red Order of Battle 
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Figure 2-2. Evolution of Defenders’ Order of Battle 
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ESCORTED BOMBERS ENGAGED 
BY SURFACE-TO-AIR MISSILE SITES  

We developed two models of engagements between escorted bombers and SAM 
sites. The first, and more sophisticated of the two, considers engagements of four 
bombers, escorted by SEAD aircraft, with four SAM sites. The alternative model 
considers the situation in which the SEAD escorts engage the SAM sites before 
the sites engage the bombers, either because the SEAD escorts precede the bomb-
ers sufficiently or  the SEADs have such low radar cross sections that the SAM 
sites’ radars are unlikely to acquire them.  

Primary Model 
The bombers are assumed to make a low-level attack, so that the SAMs have time 
to launch only two missiles before the bombers have dropped their bombs. An 
engagement with a SAM site commences when the site turns on its radar, attempt-
ing to lock on to a bomber (the site is assumed to ignore the escorts). When the 
site’s radar comes on, the SEAD aircraft attempt to lock on to that emitter. 
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If the site locks first, it kills a bomber with probability Pks. If the escort locks first, 
it kills the site with probability Pke. 

If the site misses, it turns off its radar and, if bombers are still available as targets, 
begins the engagement sequence again. The site also recommences the engage-
ment sequence if the escort misses. 

We assume that times to lock have the exponential distribution, for both the site 
and the escort. If the distributions’ parameters are λs for the site and λe for the es-
cort, straightforward calculations show that the probability that the site locks first 

is 
es

s

λλ
λ
+

. It follows that the probabilities of the four possible outcomes of a sin-

gle “round” of the engagement have the values shown in Table 2-1. The symbols 
given in that table for the outcomes will be convenient. We will also find it con-
venient to use the symbol Qbk for the quantity 1 − Pbk, that is, the probability that 
no bomber was killed in a single round. 

Table 2-1. Outcome Probabilities 

Outcome Probability Symbol 

Site destroyed ke
es

e P
λλ

λ
+

 Psk

Bomber destroyed ks
es

s P
λλ

λ
+

 Pbk

Site missed )1( ks
es

s P−
+ λλ
λ

 Psm

Escort missed )1( ke
es

e P−
+ λλ
λ

 Pem

 
With this information, we can develop the probabilities p0, p1, and p2, which are, 
respectively, the probability of 0, 1, or 2 bombers killed in engagements with a 
single site, when at least two bombers are available as targets. 

The probability of 0 kills is 

 )1)((0 bkemsmsk PPPPp −++= . 2-1 

That is, the site makes no kill if it is destroyed in the first round, or, if it makes no 
kill in the first round but the engagement continues to the second round, and the 
site makes no kill in the second round. 
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The probability of 1 kill is 

 bkbkbkemsm QPPPPp ++= )(1 . 2-2 

That is, the site either made 1 kill in the first round and no kill in the second, or, it 
made no kills in the first round, but there was a second round in which the site 
made a kill. 

The probability of 2 kills is 

 . 2-3 2
2 bkPp =

We can now develop expressions for the probabilities P0, P1, P2, P3, and P4, 
which are, respectively the probabilities of 0, 1, 2, 3, or 4 bombers killed. For the 
present, we make the restrictive assumption that the sites engage sequentially, so 
that the bombers “run a gauntlet” of separated sites. (We plan to treat the case of 
simultaneous engagements of bombers and sites in later work.) 

We view the system after the results of each of the 4 sites separately. We will use 
the notation for the value of Pi

nP n after the engagements of the ith site. 

Obviously, after one site’s engagement,  for n = 0, 1, and 2;  
are both zero, because the site has only two missiles. 

pnPn =1 1
4

1
3 PandP

After two sites’ engagements, the probabilities of the numbers of kills are given 
straightforwardly by the convolution of the set (p0, p1, p2) with itself. 

This straightforward convolution process does not continue through three sites’ 
engagements, however, because when three bombers are killed by the first two 
sites’ engagements, only one bomber remains. The engagement of the third site 
cannot make two kills. Also, when the first two sites’ engagements have made 4 
kills, there is no engagement of the third or fourth site. The effect of these facts is 
to replace the simple convolution results with these values for  for i = 3 
and i = 4: 

ii PandP 43

 . 2-4 1
1

1
21

1
33 2 −−− ++= iii

kb
i PpPpPQP

 . 2-5 1
1

1
21

1
33 2 −−− ++= iii

kb
i PpPpPQP

Completing these calculations, we have values for Pn = . For the parameter 
values of Table 2-2, Figure 2-3 shows the probability distribution of the number 
of bombers killed. 

4
nP
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Table 2-2. Parameter Values 

λe λs Pka Pks

2 2/3 0.6 0.8 
 

Figure 2-3. Bomber Probability Distribution 
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Although we made calculations with this model only for the case of exponential 
time-to-kill distributions, this restriction is not a property of the model itself. 
Other distributions may be used, and it is simple to change distributions. For ex-
ample, to use the model when the time-to-kill distributions of both SAMs and es-
corts are those of the two-phase kill model discussed in an earlier report 
(Stochastic Models of Air Superiority Engagements and Campaigns), one need 

only replace the expression 
es

s

λλ
λ
+

 in Table 2-1 by Pshipfirst: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

−
+

−
+−−

−= sa

s

sa

s

as

s

sa

s

ssaa

aa

shipfirstP
22

1

12

2

12

1

11

2

1212

21 11
λλ

λ
λλ

λ
λλ

λ
λλ

λ
λλλλ

λλ
 2-6 

and replace 
es

e

λλ
λ
+

 by 1 − Pshipfirst. In (2-6), the parameters are, respec-

tively, the parameters of the exponential distribution of the time for the escorts to 
lock onto a SAM site and of the exponential distribution of the time for the es-
corts to fire a missile, having locked on. Parameters  play the homolo-
gous role for the site. 

aa and 21 λλ

ss and 21 λλ
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Alternative Model for Invulnerable SEAD Aircraft 
It may happen that the SEAD escorts precede the bombers sufficiently that they 
engage the SAM sites before the sites can engage the bombers. It may also hap-
pen that the SEADs have such low radar cross sections that the SAM sites’ radars 
are unlikely to acquire them. In this case, a simpler model is applicable. In this 
model, the only parameters are the number of missiles carried by the SEAD air-
craft and the missiles’ single-shot kill probability. If the aircraft have a total of M 
missiles, and there are N SAM sites, then straightforward analysis based on the 
usual “tree” diagram for binomial probabilities gives the probabilities of the en-
gagement’s outcomes. 

To describe those outcomes, we may characterize the system state with the or-
dered pair (m, n), where m is the number of missiles and n the number of targets 
at the end of the engagement. Then, denoting the missiles sspk by p and the quan-
tity 1 − p by q, we have 

 ),,()0,( pNNBNMP =−  2-7 

 NMjpjNNqBpjNNBjNMP −≤≤−+−+=−− 1),,1,(),,()0,(  2-8 

 ),,(),0( pMjNBjP −= . 2-9 

Figure 2-4 shows an example of this model, when the SEAD aircraft fire 8 mis-
siles with sspk = 0.6, against 4 SAM sites. 

Figure 2-4. SAM Probability Distribution 
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MODEL OF ENGAGEMENTS BETWEEN A SEAD 
AIRCRAFT AND A MISSILE-FIRING SHIP 

Some troop movements may be made by amphibious landing. In this case, mis-
sile-firing ships may escort troop-carrying ships. SEAD missions may then be re-
quired to permit tactical air attack of the troop carriers. 

We model this situation by assuming that the attacking aircraft has four missiles 
(this number can be changed, of course) and that the ship has arbitrarily many 
missiles. The engagement begins when the aircraft illuminates the ship  to fire a 
missile. At that time, the ship begins to develop a track on the aircraft. 

We assume that the time for the aircraft to fire and the time for the ship to fire 
each have exponential distributions, with parameters λa and λs, respectively. If the 
ship fires first, it kills the aircraft with probability Pks; if the aircraft fires first, it 
kills the ship with probability Pka. 

If the ship misses, the opponents fight another round. If the aircraft misses and has 
not used all its missiles, the opponents fight another round. If the aircraft misses 
and has used all its missiles, it breaks off the engagement. 

This model of the engagement leads to the discrete-time Markov process. We de-
scribe the system state with the ordered triple (a, m, s), where a = 1 if the aircraft 
has not been destroyed, and a = 0 if it has been. The parameter m is the number of 
missiles on the aircraft. The parameter s = 1 if the ship has not been destroyed; 
otherwise s = 0. 

The system begins in state (1, 4, 1). At this time, four events are possible: 

1. The ship locks first and kills the aircraft. 

2. The ship locks first and shoots an unsuccessful missile. 

3. The aircraft locks first and destroys the ship. 

4. The aircraft locks firs, and shoots an unsuccessful missile. 

We denote the probability of event i as Qi. Table 2-3 shows the values of the Qi as 
functions of the engagement’s parameters. 
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Table 2-3. Event Probabilities 

Event probability Value 

Q1 ks
as

s P
λλ

λ
+

 

Q2 )1( ks
as

s P−
+ λλ
λ

 

Q3 ka
as

a P
λλ

λ
+

 

Q4 )1( ka
as

a P−
+ λλ
λ

 

 
In Table 2-4, we see that the system transitions from state (1, 4, 1) to state (0, 0, 
1) with probability Q1, to state (1, 4, 1) with probability Q2, to state (1, 3, 0) with 
probability Q3, and to state (1, 3, 1) with probability Q4. Continued exploration of 
the system’s states and transitions leads to the system’s state transition matrix.  

Table 2-4. Aircraft versus Ship Transition Matrix 

Resultant state (aircraft,missile,ship) Initial 
state 141 001 130 131 120 121 111 101 110 100 

141 Q2 Q1 Q3 Q4 0 0 0 0 0 0 
001 0 1 0 0 0 0 0 0 0 0 
130 0 0 1 0 0 0 0 0 0 0 
131 0 Q1 0 Q2 Q3 Q4 0 0 0 0 
120 0 0 0 0 1 0 0 0 0 0 
121 0 Q1 0 0 0 Q2 Q4 0 Q3 0 
111 0 Q1 0 0 0 0 Q2 Q4 0 Q3

101 0 0 0 0 0 0 0 1 0 0 
110 0 0 0 0 0 0 0 0 1 0 
100 0 0 0 0 0 0 0 0 0 1 

Note: We have omitted the parentheses and commas in the state symbols for the row and column labels 
to save space. 

 
Let us call the state transition matrix A. We may then compute the engagement’s 
outcome probabilities as 

  2-10 1)( lim eAP n

noutcome ∞→
=
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where e1 denotes the column vector with 1 in the top row and zeroes in every 
other row. That is, we know that the system begins in state (1, 4, 1), and the col-
umn of state probabilities after each transition is given by multiplying the column 
of probabilities before transition, by the matrix A. 

We may, of course, see the values of P(outcome) by simply reading off the first 
row of An for large n. Here, “large” means sufficiently large that the probabilities 
of all states except the absorbing boundary states—(0, 0, 1), (1, 3, 0), (1, 2, 0), (1, 
0, 1), (1, 1, 0), and (1, 0, 0)—are small compared to 1. 

The probability that the aircraft is destroyed is the limiting probability of state (0, 
0, 1). The probability that the ship is destroyed is the sum of the limiting prob-
abilities of states (1, 3, 0), (1, 2, 0), (1, 1, 0), and (1, 0, 0). The probability that the 
aircraft runs out of missiles and breaks off the engagement is the limiting prob-
ability of state (1, 0, 1). 

The state transition matrix has a good deal of structure, so it is possible that some 
conclusions about the outcome probabilities can be reached analytically. We defer 
treating this possibility for later work, and content ourselves for now with nu-
merical computations. The matrix multiplication routines of Microsoft Excel fa-
cilitate those computations. 

Figure 2-5 shows the results of an example calculation for λa = 0.2, λs = 0.125, 
Pka = 0.8, and Pks = 0.6. With these parameters, both the ship’s radar and the 
ship’s missiles are distinctly inferior to those of the aircraft: the ship requires four 
times as long as does the aircraft to lock onto its target, and the sspk of the ship’s 
missiles is only 75 percent of that of the aircraft’s missiles. Nevertheless, as Fig-
ure 2-5 shows, the aircraft will loose about one-third of the engagements. (The 
probability of the aircraft’s running out of missiles and breaking away, 0.00045, is 
too small to show in the figure.) 
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Figure 2-5. Outcome Probabilities for SEAD/Ship Engagement 
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As one would expect, changing the parameters to give the ship better radar than 
the aircraft’s radar turns the engagement strongly against the aircraft, even when 
the combatant’s missiles have the same sspk. Figure 2-6 shows the outcome prob-
abilities for λa = 0.2, λs = 0.3, Pka = 0.6 and Pks = 0.6. 

Figure 2-6. Outcome Probabilities, Ship’s Radar Better Than Aircraft’s 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A/C out Ship out A/C break

Pr
ob

ab
ili

ty

 

With sspks as large as 0.6, the ship’s advantage in having many more missiles 
than does the aircraft is not noticeable. The probability that the ship wins the en-
gagement, which is the sum of the probabilities that the aircraft is killed and that 
the aircraft must break away, having run out of missiles, is not very different from 
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the probability that the aircraft is killed, because the probability of the aircraft’s 
breaking away is so small. 

For smaller sspks, however, the ship’s missile-carry advantage is much more no-
ticeable. For example, if the two combatants’ radars are equal, and their missiles 
both have an sspk of 0.2, then the probability that the aircraft breaks away is 20 
percent, and the probability that the ship wins the engagement is 60 percent. 

TWO-PHASE KILL MODEL OF ENGAGEMENTS 
BETWEEN SEAD AIRCRAFT AND MISSILE-FIRING 
SHIPS 

The model of the previous section treats a duel between one SEAD aircraft and 
one missile-firing ship. To model engagements between multiple SEAD aircraft 
and multiple ships, and to include the effects of an aircraft’s maneuvering to break 
the lock of a ship’s radar, we may use a two-phase kill model of the kind intro-
duced in Stochastic Models of Air Superiority Engagements and Campaigns.1 For 
completeness, we briefly describe this model here. 

We consider an engagement in which m aircraft engage n missile-firing ships. We 
characterize the system state as (m, i, n, j), were m is the total number of SEAD 
aircraft, i is the number of aircraft that have locked onto a ship, n is the total num-
ber of missile-firing ships, and j is the number of ships that have locked onto an 
aircraft. 

In general, the seven events listed in Table 2-5 can change the system’s state. 

Table 2-5. Ship Engagement Transition Events 

Transition Number 

An aircraft can lock onto a ship  1 
An aircraft can kill a ship that has locked onto an aircraft 2 
An aircraft can kill a ship that has not locked onto an aircraft 3 
An aircraft can break the lock of a tracking ship 4 
A ship can lock onto an aircraft 5 
A ship can kill a tracking aircraft 6 
A ship can kill an aircraft that has not locked onto a ship 7 

 
We denote the probability that the system is in state (m, i, n, j) at time t by 
Pm,i,n,j(t). If M denotes the initial number of aircraft and N the initial number of 
ships, then at the initial time, PM,0,N,0(0) = 1 and all other Pm,i,n,j(0) are zero. Let 
                                     

1  It seems unlikely that a ship can maneuver so well as to break the aircraft’s lock, although 
this possibility can be introduced readily into an extended version of the model.  
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the rate at which the aircraft make lock be k1a, the rate at which they make kills, 
having made lock, be k2a, and the rate at which the aircraft break lock be kxa. Let 
the rate at which the ships make lock be k1s, and the rate at which they make kills, 
having made lock, be k2s. The system’s transient states evolve according to the 
equations: 
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for Mmin < m  M, 0 ≤ ≤  i ≤  m, Nmin < n ≤  N, 0 ≤  j ≤  n, where Mmin denotes the 
smallest number of aircraft with which the SEADs stay engaged. (The numbered 
terms in equation (2-11) correspond to the numbered transition events in  
Table 2-5.) 

Rather than tracking the evolution of the system’s absorbing boundary states, we 
find it convenient to track the evolution of the elements of the loss probabilities 
Q(m, n), where m is the number of aircraft lost and n is the number of ships lost. 
Those evolution equations are 
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Figure 2-7 shows an example of the joint probability distribution Q(m, n) for the 
outcome of an engagement between four ships and four aircraft. The aircraft 
break away after sustaining two losses (Mmin = 3). The ships cannot break off the 
engagement.  
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Figure 2-7. Joint Distribution of Outcome Probabilities 
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Table 2-6 shows the values of the ship and aircraft parameters. The parameters 
describe an engagement in which the ships lock onto targets at twice the rate at 
which the aircraft lock onto targets; the aircraft and the ships both kill tracked tar-
gets at the same rate, and the aircraft break the ships’ locks at twice the rate at 
which ships kill tracked targets. 

Table 2-6. Parameter Values 

ka1 ka2 kax ks1 ks2
0.5 2 4 1 2 

 

ENGAGEMENTS OF TACTICAL AIRCRAFT 
WHEN ONE COMBATANT’S AIRCRAFT CARRY 
ONLY TWO MISSILES 

In Stochastic Models of Air Superiority Engagements and Campaigns, we re-
ported on the development of  missile-tracking probabilistic models of engage-
ments between flights of tactical aircraft. These models show the effects of 
varying missile loads on tactical aircraft engagements. Studies with these models 
indicated that, while finite missile loads did have some effect on engagement out-
comes when aircraft carried six missiles, for many cases the results for models 
assuming infinitely many missiles did not differ too greatly from those of missile-
tracking models. 

Some of the aircraft of interest to TACAIR carry only two missiles, however. For 
these aircraft, it seems that missile-tracking models should be used. But when 
these aircraft’s opponents carry six or more missiles, models tracking each com-
batant’s missiles have 10-dimensional state vectors and involve very large num-
bers of states. This leads to cumbersome numerical work for engagement analyses. 
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We made a special engagement model for these cases. The model tracks missiles 
for the two-missile aircraft and assumes infinitely many missiles for their oppo-
nents. In this model, we called the two-missile aircraft the Red aircraft, and their 
opponents the Blue aircraft. 

The state vector for this model is (m, n1, n2), where m is the number of Blue air-
craft, n1 the number of Red aircraft with one missile, and n2 is the number of Red 
aircraft with two missiles. 

In general, the six events shown in Table 2-7 change the system’s state. 

Table 2-7. Air-to-Air Transition Events 

Transition event Number 

A Red carrying one missile makes a kill 1 
A Red carrying two missiles makes a kill 2 
A Red carrying one missile shoots a missile that does not make a kill 3 
A Red carrying two missiles shoots a missile that does not make a kill 4 
A Blue kills a Red that carries one missile 5 
A Blue kills a Red that carries two missiles 6 

 
There is another event in which a Blue kills a Red with no missiles. In the present 
model, we avoid explicit accounting for this event with the assumption that a Red 
aircraft with no missiles is killed. This assumption could be changed, for example, 
with the assumption that a Red aircraft with no missiles breaks away. 

The parameters of the model are kb, the rate at which the Blue aircraft make kills; 
kr, the rate at which Red aircraft make kills; and pk, the single-shot kill probability 
of the Red missiles. A third parameter, km, the rate at which the Red aircraft fire 
missiles that miss, follows from kr and pk in this way: if the Red aircraft kill at the 
rate kr, then they must fire at a rate μ such that 
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Denoting the probability that the system is in state (m, n1, n2) at time t by 
Pm,n1,n2(t), we find that the system’s states evolve according to these equations: 
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The number terms in equation (2-15) correspond to the transition events in Ta-
ble 2-7. In (2-15), n = n1 + n2, and the Heaviside function H(m) is zero if m is 
less than zero, and one for all other values of m. 

The system (2-15) of ordinary differential equations is solved subject to the initial 
condition 

 1,0, =NMP  2-16 

where M is the initial number of Blue aircraft and N is the initial number of Red 
aircraft, and with the conventions that Pm, n1, n2 is zero for all (m, n1, n2) such that 
m > M or the sum n1 + n2 is greater than N, and also is zero if any of m, n1, or n2 
is not positive. 

We calculated outcome probabilities for eight Reds engaging four Blues, with kb 
= 3.7, kr = 1.0, and  pk = 0.8. Figure 2-8 and Figure 2-9 show that the loss distribu-
tions differ significantly from those of the classic stochastic Lanchester case. In 
particular, Red is much more likely to lose all eight aircraft when the limitation of 
two missiles is imposed. 
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Figure 2-8. Blue Loss Distributions 
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Figure 2-9. Red Loss Distributions 
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Note: The probability of the Blues winning the engagement is 54 percent. 

GENERALIZED ACTIVITY NETWORK MODELS 
OF COMBINED-FORCE ENGAGEMENTS 

We began development of models treating engagements between combined 
forces. We expect such engagements to happen, for example, when defenders try 
to repulse an amphibious assault force of troop carriers escorted by missile-firing 
ships. Figure 2-10 shows such a combined force engagement. 
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Figure 2-10. Defense against Amphibious Assault 

 
Legend: 

 Missile-firing ship   Covering tactical aircraft 
 Troop carrier   Defenders engaging covering tactical aircraft 
    SEAD engaging missile-firing ship 
    Tactical aircraft engaging troop carriers 

 

In this combined-force engagement, an amphibious assault flotilla of four troop 
carrier ships escorted by two missile-firing ships and eight tactical aircraft is en-
gaged by a defense package comprising four tactical aircraft whose mission is to 
eliminate the assault’s tactical aircraft, two SEAD aircraft whose mission is to 
eliminate the missile-firing ships, and a set of tactical aircraft assigned to elimi-
nate the troop carriers. 

As an illustrative example, Figure 2-11 gives a highly simplified generalized ac-
tivity network (GAN) model of this combined force engagement. 

Figure 2-11. Generalized Activity Network Model 

Win 

Lose

Win

Lose

Vs Missile Ships 

Defense repulsed 

Flotilla defeated 

Vs TAC A/C 

 

In this simple model, if the defenders assigned to defeat the flotilla’s tactical air 
cover succeed, then the SEAD aircraft engage the missile-firing ships. Otherwise, 
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the defense is repulsed. If the SEAD aircraft defeat the missile-firing ships, the 
tactical aircraft targeted against the troop carriers succeed, and the flotilla is re-
pulsed. If the SEADs do not succeed, the defense is defeated. 

Models that we have developed generate the outcome probabilities for GANs 
such as this simple one, as well as for more complex ones. For example, if the en-
gagement with the cover aircraft was the one of Figure 2-8 and Figure 2-9, and 
the two engagements of the SEAD aircraft and the missile-firing ships were the 
engagement of Figure 2-5, then the probability that the flotilla’s air cover is de-
stroyed is 54 percent, and the probability that both missile-firing ships are de-
stroyed is 44 percent. This would lead to a 23 percent probability that the flotilla 
is repulsed. 

PROBABILITY ANALYSIS 
We were asked to determine the probability, given eight different items and re-
placement after each draw, of drawing at least one of each of the eight items after 
20 draws. We developed two solutions to the problem. The first was a derivation 
of the closed-form solution equation. 

The closed form equation for the probability, given M different items and re-
placement after each draw, of drawing at least one of each of the M items after N 
draws is the following: 
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where C(M,i) is the combination of the M items taken i at a time, i.e,, 
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The second solution is a brute force spreadsheet model using generating functions 
for the combinatorial states and corresponding probabilities. Both methods were 
incorporated in an Excel workbook that was provided to TACAIR. 

The answer to the specific question of drawing at least one each of eight items 
after 20 draws is 0.530558. 

The calculations contained in the workbook can be easily expanded for arbitrary 
values of M and N. Figure 2-12 graphically shows the probabilities for M = 1 to 
20 items and N = 1 to 20 draws. In the figure, M values are contained in the leg-
end, and N values are on the abscissa. 
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Figure 2-12. Probability, Given M Different Items with Replacement after Each 
Draw, of Drawing at Least One of Each of the M Items after N Draws 
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KILL-RATES AND EXCHANGE RATIOS 
In the course of our modeling efforts, confusion has arisen over the use of ex-
change ratios and kill-rates. This section describes our present way of inferring 
kill-rates, explains why we believe there’s a better way to do this, and describes 
the better way. 

Background 
Some workers describe the relative strengths of opposing forces in the context of 
a deterministic force-on-force Lanchester model, in the “weak combat” limit. 
Specifically, a Red force with r0 members and kill-rate kr engages a Blue force 
with b0 members and kill-rate kb, in accordance with the model 
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and the engagement ends while the relative losses of both sides are small com-
pared to one. In this case, the first two terms of the time-series solution of the ini-
tial value problem (2-19) dominate, and the exchange ratio ρ, that is, the ratio of 
Red’s relative losses to Blue’s, is given by 

 2
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Sometimes this result is stated in terms of the forces’ strength ratio σ, in which 
the opponents’ initial numbers appear linearly: 
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Thus, given an exchange ratio ρ, and initial force values r0 and b0, one may infer 
the kill-rate ratio kb/kr as 
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If one is given a strength ratio σ, then the kill-rate ratio follows as 
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Now, these relations are useful when data are given explicitly in terms of ex-
change ratios or strength ratios, and when it is known that the information is given 
in the context of the weak combat limit. In earlier work done for TACAIR, we 
assumed that strength ratios are given and that Red and Blue initial numbers are 
equal. That led to some large kill-rate ratios. 

The relations are definitely not useful, however, if the given information is in 
terms of losses in deterministic engagements that go to completion, and that may 
involve breaking-away by either side. Furthermore, they are not useful if the in-
formation relates to statistics of probabilistic engagements. 

New Approach 

We have been given engagement information that may be described reasonably 
accurately as the ratios of expected losses, in engagements of four Blues with 
eight Reds, when the Blues break away after sustaining 50 percent losses. To see 
the relation of that information to kill-rate ratios, we determined numerically the 
relation between kill-rate ratios and the ratio of Red expected loss to Blue ex-
pected loss, in four vs. eight engagements treated by the stochastic Lanchester 
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model, when Blues break away at 50 percent loss. Figure 2-13 displays the re-
sults. 

Figure 2-13. Ratio of Expected Loss vs. Kill-Rate Ratio in Four vs. Eight 
Engagements when Blues Break Ways at 50 Percent Loss 
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The results follow the linear function 

 Ratio of expected loses 9081.0)(8802.0 −−= ratiorateKill  2-24 

with errors of less than 6 percent, for kill-rate ratios greater than about 3.75, cor-
responding to ratios of expected losses greater than about 2.25. The linear relation 
is not accurate for smaller kill-rate ratios. 

When the linear relation is accurate, kill-rate ratios follow from ratios of expected 
losses as 

 1362.1=− ratiorateKill *(Ratio of expected losses) + 1.0318. 2-25 

 2-22  



Campaign Analyses 

Values of kill-rate ratios corresponding to some of the observed ratios of expected 
losses are shown in Table 2-8. 

Table 2-8. Kill-Rate Ratios and Ratios of Expected Losses 

<Red loss>/
<Blue loss> Kill-rate ratio 

<Red loss>/ 
<Blue loss> Kill-rate ratio 

88 100.654 8 10.261 
44 51.087 6 7.937 
33 38.674 4 5.574 
24 28.498 3 4.371 
22 26.232 2.25 3.442 
16 19.420 2 3.125 
12 14.858 1 1.782 
11 13.713 0.25 0.537 

 
Inferring kill-rate ratios from ratios of expected losses directly from probabilistic 
engagement models leads to much smaller kill-rate ratios than those we have pre-
viously used. Believing this to be a more accurate model of the observations, we 
now use this new method until a better understanding of the engagements on 
which the data are based becomes available. 

Markov Model Comparison 
We ran the NASA ASSIST and STEM Markov analysis tools to compare with the 
results above.2 The conditions were four Blues vs. eight Reds with Blues leaving 
after two losses. We input the kill-rate ratios and used the results to calculate the 
exchange ratios, which is the opposite of the calculations above. The Markov 
model results agree exactly with the results above. Tables 2-9 through 2-11 show 
the input and output for each of three cases. Figures 2-14 through 2-16 show the 
corresponding details of the probabilities of Blue and Red losses. In each chart, 
the abscissa contains categories representing the numbers of Blue and Red aircraft 
lost, i.e., from left to right, B0–B2 Blue lost and then R0–R8 Red lost. The ordi-
nate shows the loss probabilities of aircraft in each category. 

                                     
2 ASSIST is the abbreviation for Abstract Semi-Markov Specification Interface to the SURE 

Tool, a high-order language tool to generate input files for both STEM and SURE Markov analy-
sis tools. STEM is the abbreviation for Scaled Taylor Exponential Matrix, a Markov analysis tool. 
SURE is the abbreviation for Semi-Markov Range Estimator, a semi-Markov analysis tool not 
used here. 
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Table 2-9. Blue and Red Loss Probabilities 
for 0.537:1 Kill-Rate Ratio 

Case 1 

Input: B:R Kill-Rate Ratio 0.537 
Output: B:R Exchange Ratio 0.25 

 

Figure 2-14. Blue and Red Loss Probabilities for 0.537:1 Kill-Rate Ratio 
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Table 2-10. Blue and Red Loss 
Probabilities for 10.261:1 

Kill-Rate Ratio 

Case 2 

Input: B:R Kill-Rate Ratio 10.261
Output: B:R Exchange Ratio 8.00 
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Figure 2-15. Blue and Red Loss Probabilities for 10.261:1 Kill-Rate Ratio 
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Table 2-11. Blue and Red Loss Probabilities 
for 100.654:1 Kill-Rate Ratio 

Case 3 

Input: B:R Kill-Rate Ratio 100.654 
Output: B:R Exchange Ratio 88.0 

 

Figure 2-16. Blue and Red Loss Probabilities for 100.654:1 Kill-Rate Ratio 
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Chapter 3    
SLAACM as a Component 
in Integrated Analyses 

Although individual SLAACM analyses certainly can be helpful, SLAACM may 
give even more useful results when operated as part of an integrated analysis that 
considers features not treated in SLAACM itself. Such analyses may involve the 
operation of other models, which may themselves be substantial packages. 

It is always possible, of course, for an analyst to operate suites of models, passing 
data among the models of a suite by hand or by manually executed file transfers. 
This process is time-consuming and prone to error. 

Applications packages now available provide convenient, automated operation of 
suites of models. LMI has worked with one of these, the Federated Intelligent 
Product Environment (FIPER). 

FIPER is a result of a 4-year, $21.5 million project initiated to develop the next 
generation of product design and analysis technology. The National Institute of 
Standards and Technology Advanced Technology Program—along with Engine-
ous Software (the prime software developer for FIPER components), General 
Electric, Goodrich, Parker-Hannifin, and OAI—provided funding for its devel-
opment. Research partners also include Ohio University and Stanford University. 

FIPER establishes an environment that streamlines the design of highly engi-
neered products, integrating legacy and best-of-breed design and analysis tools 
through a web-enabled environment and supporting collaboration among geo-
graphically distributed teams. The FIPER design addresses the problem of dis-
tributed, collaborative product engineering. It integrates distributed models in a 
heterogeneous environment. 

FIPER technologies are advanced state of the art and use standardized file formats 
and web-based communications protocols. Interface relationships between tools 
are discoverable, and more complex relationships are easily defined and invoked. 
FIPER uses standard XML to describe all data and component interfaces.1 Tools 
developed to the FIPER component standard are plug-and-play compatible with 
other tools in the FIPER system. There are defined application package interfaces 
for building components to provide compatibility with individual modeling and 
                                     

1 A component is a collection of objects that provide a cohesive set of services to a client. 
Each of the objects that make up the component can be developed independently. Also, each set of 
components can be developed independently. Objects are software bundles of data and procedures. 
The procedures acting on the data are known as methods. The state of an object is determined by 
its data, while the behavior of an object is defined by its methods. 
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simulation applications. Finally, FIPER is designed to be web based, allowing in-
tegration of models that operate on heterogeneous platforms over a network or the 
web. 

As an experiment to test FIPER’s usefulness, and using LMI’s own resources, the 
team made an exploratory example of using SLAACM as part of an integrated 
cost/performance optimization study, in which FIPER was the integrating agent. 
Figure 3-1 describes the problem treated in the study. 

Figure 3-1. Optimization Study 

• Requirement:  75 Blue fighter a/c defeat optimal assault from 
mix of 792 a/c, allowing no more than 1,100 tons of bombs 
dropped by “leakers,” with 80% confidence that there are no 
more than 45 Blue losses.

• Current fighter:  1,200 tons dropped, 56 losses
• Alternative I:  Improve airframe and propulsion ($12B)

– 1,067 tons dropped, 42 losses

• Alternative II:  Improve radar (Cost and outcome are functions of 
improvement)

• Alternative III:  Improve missile sspk (Cost and outcome are 
functions of improvement)  

The team used available LMI models of radar cost and missile cost. The models 
were roughly related to actual cost data. The cost models are intended only to give 
an example of the use of SLAACM in an integrated environment, and the conclu-
sions of the study are not necessarily valid for any actual radars, missiles, or air-
craft. 

As shown in Figure 3-2, we made the test using SLAACM to assess the war-
fighting implications—specifically, the 85 percent-confidence value of Blue 
losses, and the expected value of tons of bombs dropped—of changes in missile 
single-shot kill probability (sspk) and radar power-aperture product (PA). We 
used FIPER to drive five models: a radar model, a radar cost model, a missile cost 
model, a kill-rate model reflecting the effect on kill-rate ratios of changes in sspk 
and PA, and SLAACM. 
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SLAACM as a Component in Integrated Analyses 

Figure 3-2. Integrated Analysis Configuration 

 

Here is the way we inferred changes in kill-rate ratios, resulting from changes in 
sspk and power-aperture product. We considered a two-phase kill process. The 
first phase is target acquisition, and we associated improvement in the radar’s 
power-aperture product with that phase. Specifically, we modeled the changed 
first phase rate k1 new as proportional to the original first phase rate k1 old and to the 
ratio of the new power-aperture product, PAnew, to the old power-aperture prod-
uct, PAold: 
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In a two-phase kill process the rate of the second phase, k2, is equal to the firing 
rate μ times sspk. Accordingly, we modeled the effect of changed sspk by 
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Now, in the two-phase kill model, the time to make a kill is the sum of two expo-
nentially distributed random variables, one with parameter k1 and the other with 
parameter k2. The mean of a sum is the sum of the means of its terms, so the mean 
time to make a kill, Tmean, is given by 
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The mean rate kmean of the time to make a kill is the reciprocal of Tmean. Accord-
ingly, we found the ratio of new kill rate knew to old kill rate kold as 
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We adjusted the kill-rate ratios of all the Red aircraft to the new, modified Blue 
aircraft by the ratio calculated with (3-4). We made this rough-and ready adjust-
ment only for an example study to test using SLAACM in an integrated model. We 
would revisit this model an any actual study. 

In the test, we used FIPER’s design-of-experiment (DOE) mode. In this mode, the 
FIPER user specifies a range of sspk ratios and PA ratios, and FIPER determines, 
with a DOE procedure, a set of N (sspk, PA) pairs to map out the system’s behav-
ior. 

We instructed FIPER to treat a set of 64 (sspk, PA) pairs, and completed the ex-
ample study by identifying the least-cost member of the set of feasible (sspk, PA) 
pairs, that is, the ones that met the requirements of no more than 1,100 tons of 
bombs dropped, and 85 percent confidence that Blue would have no more than 45 
losses. The results are shown in Figure 3-3. 

Figure 3-3. Example Study Results: Feasible Points and Solution 
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It is interesting that the optimal result, for the cost models of the study, would be 
to modify the missile, and not the airplane or the radar. That conclusion depends, 
of course, on the very rough cost models and kill rate model used, and is not nec-
essarily correct for any actual aircraft, radar, or missile. 
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SLAACM as a Component in Integrated Analyses 

We concluded from this experiment that SLAACM may be used helpfully in 
linked suites of models, for more general studies than those SLAACM alone can 
address. 
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Chapter 4    
Runway Interdiction Analysis 

This chapter documents a mathematical analysis  of runway interdiction by sub-
munition (bomblet) weapons. It has three sections. In the first, we describe the 
problem and methods of solution. In the second, we develop a solution for the 
case in which the runway width is not more than twice the minimum required op-
erating width. In the third section, we  extend the solution to three times the 
minimum width. 

THE BASIC PROBLEM 
Figure 4-1 illustrates the runway interdiction problem. Attacking a runway of 
width 2W, a missile delivers N submunitions with impact points distributed uni-
formly over the circle of radius R, centered at the missile’s impact point XI. Each 
submunition destroys a circle of diameter d, centered on its impact point. The 
runway is still usable if it has an undamaged lane of width r, running parallel to its 
centerline. Otherwise the runway is closed. Missile impacts within distance R of 
the runway’s ends are unlikely to close it, and they are ignored in this problem 
statement. Also for this reason, only abscissas  of the missile and submunition 
impact points are relevant to the interdiction problem. We refer all abscissas to the 
runway centerline.   

Figure 4-1. Runway Interdiction 
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Description of Lanes 
Label a lane on the runway with the abscissa of its left-hand end. The lane e is the 
set [e, e + r].  The runway is closed if some part of every lane with e in [−W, W − 
r] is damaged by the submunitions; otherwise it is still usable. 

Lanes Damaged by a Submunition 
A submunition impacting with abscissa xi damages lanes with e in the set E(xi), 
given by 

 [ ])rW,/dxmin(),W,r/dxmax()x(E iii −+−−−≡ 22 . 4-1 

A Formal Statement of the Interdiction Problem 
A formal statement of the interdiction problem can be given with the E(xi). It is 
simply 

 . 4-2 U
N

i ]rW,W[)x(E
1

−−⊃

The xi are the abscissas of N draws from the bivariate uniform distribution of the 
submunitions’ impact points. Let that distribution be g(x; XI) (an expression for 
g(x; XI) is in a following section). The joint probability distribution of the { }Nix 1 is 
g(x1, XI) g(x2, XI)… g(xN, XI), and, in principle, the probability that equation (4-
2) holds can be expressed as an integral of that probability density function (pdf) 
over the appropriate region. Determining that region seems difficult, however, at 
least for N greater than 2 or 3. The use of order statistics may help develop ex-
plicit calculations expressing the probability that (4-2) is met. 

Order Statistics 

The order statistics of the { }Nix 1  are the numbers Y1, Y2, …, YN obtained by or-
dering the xi. That is, Y1 is the smallest of the xi, Y2 is the next smallest, and so on 
up to YN, which is the largest of the xi. Order statistics are of considerable interest 
in several contexts, and they have been extensively studied.1

In terms of the Yi, the requirement that the rightmost lane is closed is that there 
must be some Yk such that 

 rWdYk −≥+ 2/ .  4-3 

                                     
1 See, for example, H. L. Harter, The Chronological Annotated Bibliography of Order Statis-

tics (American Sciences Press, 1991). 
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That is, some submunitions must close the lane with e = W − r. Let YR, the left-
most impact that closes the rightmost lane, be the smallest of these. 

Similarly, some submunitions must close the leftmost lane, that is, there must be 
some Yj such that 

 WrdYj −≤−− 2/ . 4-4 

Let YL, the rightmost impact that closes the leftmost lane, be the largest of these. 
Then, to close all the lanes, the set of lanes closed by YL, YL + 1, …, YR must have 
no gaps. The requirement that the lanes closed by Yi - 1 overlap those closed by Yi 
is 

 rdYdY ii −−>+− 2/2/1  4-5 

or 

 rdYY ii +<− −1 . 4-6 

Thus a statement of the interdiction problem in terms of the order statistics of the 
is that there be a sequence Y{ }Nix 1 L, YL + 1, …, YR of order statistics such that 
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The joint probability distribution function of the Yi is known to be 

NINIIN YYYXYgXYgXYgYYYf ≤≤≤∀= KKKK 212121 ),;();();(),,,,,(  4-8 

and this fact will be helpful in calculating the probability that the interdiction 
conditions are met. Using the order statistics Yi instead of the xi makes it possible 
to consider sets of variables with consecutive indices. 

Solution of the Interdiction Problem with Order Statistics 
It appears possible to solve the interdiction problem by treating a mutually exclu-
sive and exhaustive set of sequences YL, YL + 1, …, YR that meet the requirements 
(4-7). Here is a description of that process. 

The smallest possible value for YL is Y1. Depending on the values of W and r, 
there is a smallest number of damage regions that can close the runway. Let that 
number be Nc. Then one member of our set of mutually exclusive and exhaustive 

 4-3  



  

sequences is Y1, Y2, …, YNc. Conditions 7.1, 7.2, and 7.3 applied to that sequence 
explicitly define a region of Y1, Y2, …, YN space, and, in principle, one can com-
pute the integral of the distribution function given in (4-8) over that region. In a 
similar way, one can compute the probabilities of all other sequences meeting 
conditions (4-7), that is, those for which YR is YNc + 1, YNc + 2, … YN. The process 
continues by taking YL = Y2, Y3, … and so on, through the largest possible value 
for YL, which is YN + 1 - Nc. 

The sequences generated in this way are mutually exclusive, and they exhaust the 
set of sequences satisfying conditions (4-7). Adding their probabilities gives the 
probability of interdiction. This solution is, perhaps, computationally feasible 
when Nc is not too large, i.e., two or three for damage diameters of 10 feet, im-
pacting a runway that is 150 feet wide. 

The Bivariate Circular Uniform Distribution 
and Its Marginal Distributions 

These considerations will give us an explicit expression for g(x; XI). Measured 
from the missile’s impact point XI, the coordinates (x, y) of a submunitions’ im-
pact point are uniformly distributed on a circle of radius R. Accordingly, the 
bivariate distribution of (x, y) is 
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The marginal distribution of the impact point’s abscissa, g(x), is given by 
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The cumulative marginal distribution of the impact point’s abscissa, G(x), is 
given by 
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By the symmetry of f(x, y), the marginal distribution of ordinates is given by g(y). 

Let xI denote the abscissa of XI. Then the function g(x; XI) is given by 
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GENERATING SAMPLES OF BIVARIATE UNIFORM 
RANDOM VARIABLES 

This task is made more convenient by expressing f(x, y) with polar coordinates  
(r, θ). To do this, we want a function  such that ),r(f̂ θ

  4-13 ∫∫ ∫∫
∈ ∈θ

θθ=
H)y,x( H),r(

ddr),r(f̂dydx)y,x(f

where H is any region of the plane. Now, 

  4-14 ∫∫ ∫∫
∈ ∈θ

θθθ=
H)y,x( H),r(

ddrr)),r(Y),,r(X(fdydx)y,x(f

where 

 )sin(r),r(Y);cos(r),r(X θ≡θθ≡θ . 4-15 

Thus 
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that is,  is independent of ),r(f̂ θ θ , and, as a function of r,  is proportional 
to r. 

),r(f̂ θ

To get pairs (r, θ ) corresponding to draws from a bivariate uniform distribution, 
one may choose values of θ from a uniform distribution on [0, 2π]. To obtain the 
accompanying value of r, one may invert the cumulative distribution 

 ∫ =
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22  4-17 

and set 

 xRr =  4-18 

where x is uniformly distributed on [0, 1]. Figure 4-2 shows a sample of 1,000 
points drawn from a bivariate uniform distribution. 
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Figure 4-2. Sample from Bivariate Circular Uniform Distribution 
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SOLUTION FOR 2X CASE 
The analysis below is based on the following assumptions and observations: 

 The description of the basic airport runway interdiction problem.  

 The realization that the problem can be addressed by working on the mar-
ginal distribution across the runway. “Marginal distribution” in this con-
text means the distribution along one dimension, x, reduced from the 
distribution in two dimensions, x and y. 

We try here to offer some idea on how to calculate the “passable” probability for 
the entire runway, which is the ultimate probability for the runway interdiction 
problem. We first consider passable probability at a given point. 

For the derivation of the passable probability at a given point, we follow the ap-
proach of working on the marginal distribution of the bomblets perpendicular to 
the runway centerline and assuming the radius of the bomblets r=0. 
Let 
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 x be the abscissa established perpendicular to the runway centerline, and x 
= 0 correspond to the left edge of the runway (x = 0 here corresponds to  
x = −W in the section on the basic problem) 

 f(x) be the marginal probability density function of bomblets along x 

 n be the total number of bomblets contained in a bomb or a missile (this 
corresponds to the N parameter in the basic problem) 

 r be the impact radius of each bomblet 

 G be the minimum gap between the bomblets or between a bomblet and 
the edges of the runway that allows flight operations 

 N(x1,x2) be the number of bomblets in the interval (x1,x2) 

 Pk(x1,x2) = Pr{ N(x1,x2) = k }, or the probability of k bomblets in the in-
terval (x1,x2) (P0 means there is no bomblet in the interval, not the prob-
ability at the origin, x0). 

Then, for a small Δx, the probability of having one bomblet in an interval from x 
to x+Δx is 

 ( ) xxfnxxxP Δ≅Δ+ *)(*,1 . 4-19 

Also, for a sufficient small Δx, the probability of having more than one bomblet in 
an interval from x to x+Δx is 

  4-20 )(),(
2

xoxxxP
n

j
j Δ=Δ+∑

=

where o(Δx) means a lower order than Δx. 

Let x0 be a fixed point. The probability of having no bomblets in the interval from 
the origin, x0, to x+Δx is 

P0(x0,x+Δx) = Pr{ N(x0,x+Δx) = 0 } 

= Pr{ N(x0,x) = 0, N(x, x+Δx) = 0 } 

= Pr{ N(x0,x) = 0 } * Pr{ N(x, x+Δx) = 0 | N(x0,x) = 0 }  

= P0(x0,x) * Pr{ N(x, x+Δx) = 0 | N(x0,x) = 0 }  

= P0(x0,x) * (1 - Pr{ N(x, x+Δx) = 1 | N(x0,x) = 0 } ) 
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(The t is an arbitrary variable and the integral including f(t) is a cumulative distri-
bution function over x0 to x.) 

Equation (4-21) holds because of (4-19) and the conditioning of the probability. 
Integrating (4-22) from x0 to x0+G, will yield the passable probability at point x0. 
In other words,  there is no bomblet in the interval (x0, x0+G); the probability of 0 
hits for bombs containing n bomblets is   
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Now we extend the analysis to the problem of the whole runway. The marginal 
distribution f(x) can take any functional form in the following derivation, including 
the half-circle marginal density function from the original assumption of the 2-
dimensional uniform distribution within a circle. 

For ease of derivation, we first assume r = 0, and then adjust the intervals. For r = 
0, we say the runway is passable at x0 if there is a minimum gap of G from x0, or 
there is no bomblet in [x0, x0+G]; we call its complement “blocked.” We say the 
runway is passable in [x0, x] if it is passable at any point of the interval, and its 
complement is blocked. Let Q(x) be the probability that the runway is passable in 
the interval of [x0, x], then 

Q(x+Δx) = Pr{ passable in [x0, x+Δx] }  

= Pr{passable in [x0,x] ∪ passable in [x, x+Δx] } 

= Pr{ passable in [x0,x] } + Pr{ passable in [x, x+Δx] ∩ blocked in 
[x0,x] } 

= Q(x0, x)+ Pr{ passable in [x, x+Δx] ∩ blocked in [x0,x] } 

= Q(x0, x)+ (1 - Q(x0, x) ) * Pr{ passable in [x, x+Δx] | blocked in 
[x0,x] }, 

because 

Pr{ passable in [x, x+Δx] ∩ blocked in [x0,x] } 

= Pr{ blocked in [x0,x] } * Pr{ passable in [x, x+Δx] | blocked in 
[x0,x] } 
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= (1 - Q(x0, x) ) * Pr{ passable in [x, x+Δx] | blocked in [x0,x] }. 

Let bm, m = 1, 2, …, n, be the events that [x0, x] is “blocked” and there are exactly 
m bomblets in [x0, x] (Note, for some values of m, the event of bm can be null, 
depending on the parameters, but such cases do not change the following deriva-
tion.) 

Continuing 

Pr{ passable in [x, x+Δx] | blocked in [x0,x] } 

= Pr{ passable in [x, x+Δx] | b1 ∪ b2 …∪ bn } 

= ( Pr{ passable in [x, x+Δx] ∩ b1 } + …, 
+ Pr{ passable in [x, x+Δx] ∩ bn } )/Pr{ b1 ∪ b2 …∪ bn }, 

where the last equation holds because the events bm, m = 1, 2,., n, are mutually 
exclusive. 

For all m ∈ {1, 2, …, n}, and by the definition of bm, every point of in [x0, x] is 
blocked, including the end point x. If point x is blocked, therefore, there must be 
at least one bomblet in the interval of [x, x+G]. However, for the event that the 
runway is passable in [x, x+Δx], it means there is no bomblet in the interval of 
[x+Δx, x+Δx+G]. Thus, for a small Δx, the intersection of the events that the run-
way is blocked from x0 up to x, and passable at x+Δx, leads to the conclusion that 
there is one bomblet in [x, x+Δx], and there is no bomblet in [x+Δx, x+Δx+G]. 
Let pm(x)= Pr{bm}, to first order in Δx, we have 

Pr{ passable in [x, x+Δx] ∩ bm } 

= pm (x) * Pr{ passable in [x, x+Δx] | bm } 

= pm (x) * m *f (x) * Δx *sn-m(x + Δx ) 

where the last equation holds since the two events are independent except the den-
sity of seeing one bomblet in [x, x+Δx] is now given by m*f(x) Δx, and sn-m(x + 
Δx) is the probability that the point x + Δx is passable. This is a similar idea to the 
one we used to derive the point passable probability, except that the number of 
bomblets in the interval [x0, x] makes difference. 

Let p0(x) = Pr{ b1 ∪ b2 …∪ bn }, which is actually 1 − Q(x). We then have the 
equation 
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or 
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Now, we have a differential equation for Q(x), where the subscript m−1 follows 
from the fact there is one bomblet in (x, x+Δx). With the initial condition Q(x0) = 
sn(x0), which is the probability that an aircraft can “pass” at point x0, we have an 
initial value problem for Q(x). 

From the equation above, one can see that Q(x) is a non-decreasing function and 
is not greater than 1, which are the necessary conditions. Once this fact is estab-
lished, we can then rewrite the equation above, taking the fact that p0(x) = 1 − 
Q(x), as follows 

 ∑
=

−− ∗=
n

m
mnm xfxsxmp

dx
xdQ
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1 )()()()( . 4-25 

sn-m(x) is the probability that the runway is passable at point x when there are m 
bomblets in [x0, x]. By its definition, there is no bomblet in [x, x+G]. In other 
words, none of the remaining n − m bomblets falls in [x0, x+G]. For a similar 
derivation as we did for the point passable probability calculation, we have 
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If we know the probabilities pm(x), for m=1, 2, …,n, then we should be able to 
solve the differential equation for Q(x). We have not figured out a way to solve 
the problem in general. Since the event bm is not only the case that there are m 
bomblets in the interval [x0, x], but also the event that the bomblets are scattered 
in such a way that there is no gap bigger than G to let an aircraft pass, p0 + ∑pm ≠ 
1 in general. 

If, however, |x - x0|<=G, then any number of m (>=1) bomblets falling in the in-
terval [x0, x] will automatically make the interval blocked regardless of their rela-
tive locations inside. Under this condition, pm(x) is the probability that there are m 
bomblets in [x0, x], which is given by 

 . 4-27 
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Thus, at least theoretically, we should be able to compute the passable probability 
for a section of a runway [x0, x0+G] for any x0. In other words, if the runway 
width is no more than 2G, then we should be able to compute the passable prob-
ability for the entire runway. If we have to consider the size of the bomblet, this 
condition can be verified to be 2G+2r. If the runway width is bigger than that, we 
do not have a complete solution. We can, perhaps, use curve-fitting, or some kind 
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of bounding based on different values of x0 for a segment of a runway of 2G+2r 
width. We may also use the fact that the passable probability is the highest when 
x0 is close to the tails of f(x) and that it is a non-decreasing function of additional 
runway. 

EXTENDING TO THE 3X SOLUTION 
We now extend the analysis to runways of width 3 times the gap (G). 

We have previously established the following: 
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where Q(x) is the probability that the runway is passable in [x0, x], and sn-m(x) is 
the probability that the runway is passable at point x when there are m bomblet(s) 
in [x0, x], which is given by 
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and pm(x), for m=1, 2, …, n, is the probability that there are m bomblets in the 
interval [x0, x] and that interval is also blocked. 

As stated earlier, the difficulty of applying equation  (4-28) is to figure out the 
blocked probability in [x0, x]. With this in mind, and for the easier expression, we 
will work with the following variant of (4-28), to expand our results from 2 times 
to 3 times of the needed takeoff width G, which lies in the calculation of pm(x), for 
G < x - x0 < 2G:  
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In general, the event bm—there are m bomblets in [x0,x] and [x0,x] is blocked—is 
the equivalent of the following two events: there are m bomblets in [x0,x], and 
those m bomblets will make [x0,x] blocked. In general, we have 

  4-31 βα ∗=)(xpm

where 

α is the probability that m bomblets are in the interval [x0,x], and 
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β is the conditional probability that the m bomblets will make [x0,x] 
blocked. 

From our earlier analysis, we have 

 , 4-32 
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which holds regardless of the value of x. 

The difficulty of applying (4-31) lies in the expression of β. (Fortunately, for x − 
x0<G, β≡1, because the assumed bomblet at [x, x+Δx] will always block any point 
in [x0,x].) For G<x- x0<2G, we have the following. 

 If m=0, β=0, since the assumed bomblet at [x, x+Δx] can block only  the 
interval [x-G, x], which makes [x0,x] passable because any point in [x0,x-
G] is passable.  

 If m=1, [x0,x] is blocked if and only if the bomblet is in [x-G, x0 +G], 
which leads to 
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In order to compute β when m>1, we need to divide the interval [x0,x] into three 
disjoint intervals: A=[x0,x-G], B=[x-G, x0+G], and C=[x0+G, x]. In general, 

 φεδχβ ∗+⋅=  4-34 

where  

χ is the conditional probability that there is at least one bomblet in B, 
given m bomblets in [x0,x], 

δ is the conditional probability that in [x0,x] is blocked given the event that 
there is at least one bomblet in B, 

ε is the conditional probability that there is no bomblet in B, given m 
bomblet(s) in [x0,x], and 

φ is the conditional probability that [x0,x] is blocked given the event that 
there is no bomblet in B. 
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Runway Interdiction Analysis 

The probability of no bomblet in B, or of all m bomblets either in A or C, is given 
directly by 
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and the probability of at least one bomblet in B is given by 
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For the same logic as m=1, we have δ = 1. 

The only term that we need to work now in Eq. 30 is to figure out φ. Let i, j be the 
number of bomblets in A and C, respectively, and i + j = m. In general, 
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where 

γi is the conditional probability that there are i bomblets in A, given the 
event that all m bomblets are either in A or C, and 

ηi is the conditional probability that [x0,x] is blocked, given that there are i 
bomblets in A and m-i bomblets in C. 

For i = 0, 1, …, m, γi is given by the probability of the binomial distribution as  
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or 
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The following logic attempts to figure out ηI in (4-33). First, if i = 0, then ηI im-
plies A is empty with no bomblet, which, when combined with the fact that all m 
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bomblets are either in A or C, means all m bomblets are in C only, or both A and 
B and empty. Since A and B are contiguous, it means there is no bomblet in [x0,x-
G] +[x-G, x0+G] = [x0, x0+G]. For point x0, its gap to the next bomblet (in C) is 
then more than G, which means it is open. Thus, η0 = 0. 

Similarly, ηm = 0. Thus, (4-33) can be rewritten as 
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When i>0, j>0, the largest possible gaps for the bomblets within A or C, respec-
tively, are the lengths of A or C, which are less than G. It implies that the [x0,x] is 
blocked if and only if the distance of the smallest in C and the largest in A is no 
more than G. 

For any bomblet in A, let gA and GA be its conditional density function and CDF, 
respectively. For any bomblet in C, let gC and GC be its conditional density func-
tion and CDF, respectively. Since they are the conditional probability functions, 
we have 
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if y ∈ A = [x0,x-G]; gA(y) = 0, if y ∉ A;    
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if z ∈ C= [x0+G,x]; gC(z) = 0, if z ∉ C. 

And thus, 
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if y ∈ A = [x0,x-G], and  
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if z ∈ C = [x0+G, x]. 
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Runway Interdiction Analysis 

Let 

HA be the CDF of the largest bomblet in A, 

hA be the density function of the largest bomblet in A, 

HC be the CDF of the smallest bomblet in C, and 

hC be the density function of the smallest bomblet in C. 

Because the bomblets are independent, and by their definitions, we have 
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and 
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Since the bomblets are independent, so are the smallest in C and the largest in A. 
Thus, 
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After integrating by steps, (4-45) can alternatively be expressed as 
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With (4-49) or (4-50) for ηi, one can figure out φ in (4-34), which leads to the 
computation of (4-30), which further makes it possible to compute (4-31). Thus, 
theoretically, one is able to compute the block probability pm(x) up to 2 times of 
G. In other words, we should be able to compute the passable probability Q(x) of 
a runway whose width does not exceed 3G. Most of the terms involve one-
dimensional integration. 
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